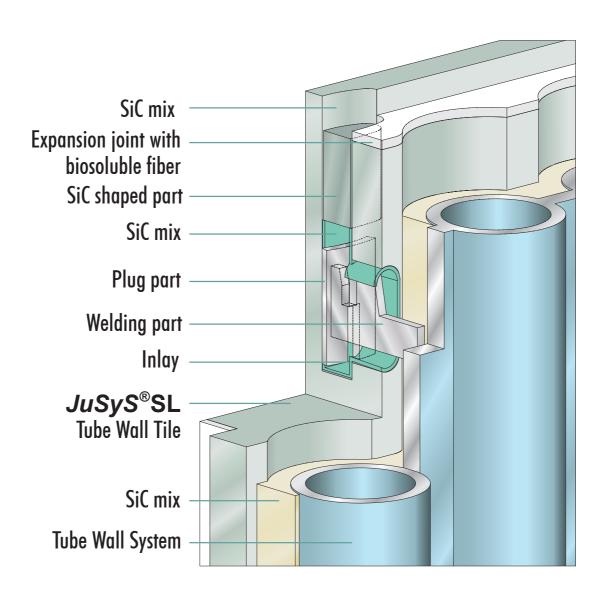


Refractory Linings for Waste Combined Heat & Power Plants and Bio Mass Boilers

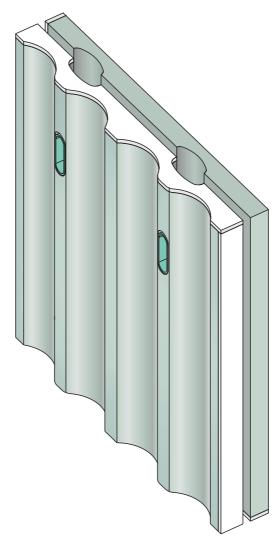
Technology and Function

The rear-filled $JuSyS^{@}SL$ Tube Wall Protection System is developed from and added to our current Tube Wall Protection Systems proven over many years, as e.g. $JuSyS^{@}$ Standard and $JuSyS^{@}Air$.


Jusys®SL consists of tube wall tiles made of SiC nitride which are <u>stressless</u> held on the tube wall system by heat resistant metallic retainers in connection with castable. Due to the stressless constructed retainer, no power transmission takes place by the movement of the tube wall and/or the different expansion of the refractory system to the tube wall. A defined gap arising from the evaporation of an especially formed poly propylene (PP) inlay effects the reduction of power and tension during operation. The retainers are covered by the tile and completely wrapped with castable as additional corrosion protection. The uninterrupted volume of the **Jusys**®SL tile is unsusceptible to cracks, even in case of thermal shocks.

JuSyS®SL provides decisive advantages:

- Reduction of power between tube wall and refractory system via the inlay
- Less cracks by the use of tiles with uninterrupted volume
- Best corrosion protection by staggered tile joints, covered arrangement of the steel retainers and their envelopment with JUFLOW mixes of low porosity
- Expansion and working joints which are adapted to the process technology and installed according to the thermal/mechanical stress in JuSyS[®]SL segments
- Variable distance between tube wall and JuSyS[®]SL tile, important in case of existing residual studding as well as uneven boiler tube wall
- No additional pressure test necessary, as the steel parts are not welded on the pressure part
- Depending on the process technology variable heat tranfers by rear casting with mixes of different thermal conductivity from the JUFLOW line (SiC or Al_2O_3 based)
- Short shut-downs by quick mounting and dismounting of the tube wall tiles
- High rentability of the initial equipment and/or the later installation



Detail **JuSyS**[®]**SL** Function and Construction of the suspension

Detail Tube Wall Tile

Detail retainer and accessories

SiC shaped part

Plug part / retainer SHRW-25

Welding part SHRW-28

Tile installation

Picture top left

Mounting of the welding parts on the tube wall by means of a stud welder

Picture top right

Inserting the plug parts / retainers into the suspended tube wall tile

Picture left

Suspending of the tube wall tiles in the prepared tube wall

Picture left

Inserting the plug parts / retainers into the installed tube wall tile

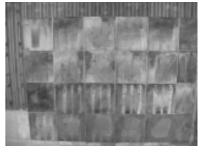
Tile installation



Inserting the tube wall tiles

Picture left Inserting the in SiC mastic dipped SiC shaped parts as upper closing of the recess

Tile installation


Picture left
Rear-casting of the tube wall tiles
with SiC-mix by means of a feeding
sheet metal

Picture leftReady-installed tube wall tile system

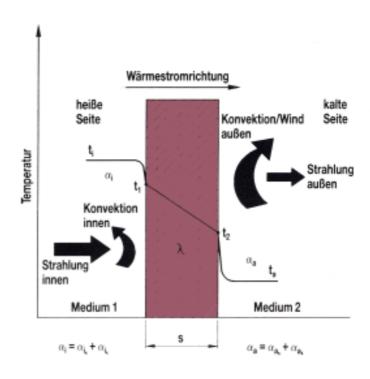
Pictures aboveReady-installed tube wall tile system

Heat transfer

The following heat flow calculations for the **Jusys**®**SL** tube wall tile system apply to the new condition of the refractory lining without any surface contamination as well as to the operating condition of the refractory lining with surface contamination.

The calculations are based on the following parameters:

Combustion Chamber Temperature: $T_{incom} = 1.000 \, ^{\circ}\text{C}$


Tube medium temperature: $T_{\text{out}} = 257 \,^{\circ}\text{C}$ (depending on the boiler pressure stage)

Heat transfer coefficient: $\alpha_{inner} = 100/200 \text{ W/m}^2\text{K}$ Heat transfer coefficient: $\alpha_{outer} = 10.000 \text{ W/m}^2\text{K}$

Surface contamination: = 5 mm slag /coating Rear-castable of the tile system: = 6/10 mm SiC-mix

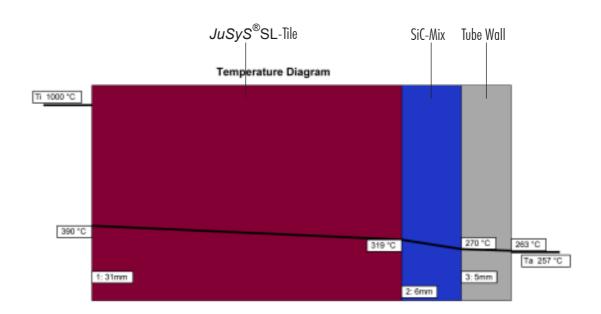
The outcome of this is the following heat flow density in W/m² wall surface:

Dicke	without contamination		with contamination		
Hintergießmasse	100 W/m ² K	200 W/m ² K	100 W/m ² K	200 W/m ² K	
6 mm	61.000 W/m ²	103.000 W/m ²	20.300 W/m ²	23.800 W/m ²	
10 mm	58.500 W/m²	95.700 W/m²	20.000 W/m ²	23.400 W/m²	

JuSyS®SL

Heat Transfer Calculation - without contamination-

Client : Tube Wall Tile System JuSyS SL


Project : rear-filled with SiC

Component / Part : Tube Wall Tile without Surface Contamination

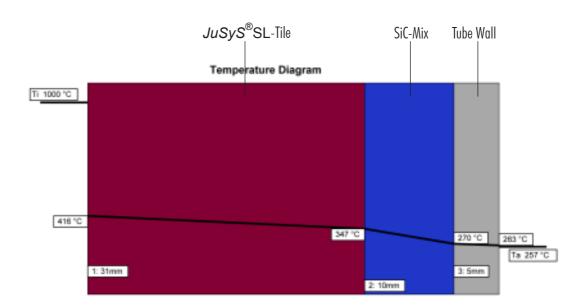
Calculation Model : Plane vertical Wall

Ambient Conditions	Inner	Outer	Unit
Ambient Temperature	1000	257	°C (Input)
Wall Temperature	390	263	°C (Calculated)
Heat Transfer Coefficient	100	9999,9	W/(m²K)
Calculation Model	manual	manual	
Air Speed			m/s
Radiation Coefficient			**
Sun Radiation			W/m²
Diameter			mm
Heat Flow Density through Wall	60956	60956	W/m²

Wall Construction		Cond. Factor	Thickn.	Cond.	Tempera Lay	
Material			mm	W/(mK)	Face °C	Mean °C
1: +SI107C	SiC brick		31	26,300	390,4	354,5
2: +SM115B	SiC mix		6	7,600	318,6	294,5
3: +ST0425	steel		5	41,331	270,5	266,8
			42		263,1	

Heat Transfer Calculation - without contamination-

Client : Tube Wall Tile System JuSyS SL


Project : rear-filled with SiC

Component / Part : Tube Wall Tile without Surface Contamination

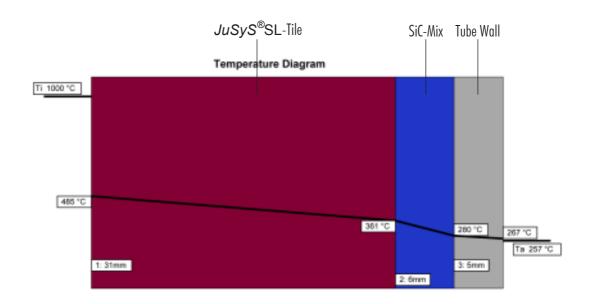
Calculation Model : Plane vertical Wall

Ambient Conditions	Inner	Outer	Unit
Ambient Temperature	1000	257	°C (Input)
Wall Temperature	416	263	°C (Calculated)
Heat Transfer Coefficient	100	9999,9	W/(m²K)
Calculation Model	manual	manual	**
Air Speed			m/s
Radiation Coefficient			
Sun Radiation			W/m²
Diameter			mm
Heat Flow Density through Wall	58426	58426	W/m²

Wall Construction		Cond. Factor	Thickn.	Cond.	Tempera Lay	
Material			mm	W/(mK)	Face °C	Mean °C
1: +SI107C	SIC brick		31	26,300	415,7	381,2
2: +SM115B	SiC mix		10	7,600	346,8	308,3
3: +ST0425	steel		5	41,341	269,9	266,4
			46		262,8	

Heat Transfer Calculation - without contamination -

Client : Tube Wall Tile System JuSyS SL


Project : rear-filled with SiC

Component / Part : Tube Wall Tile without Surface Contamination

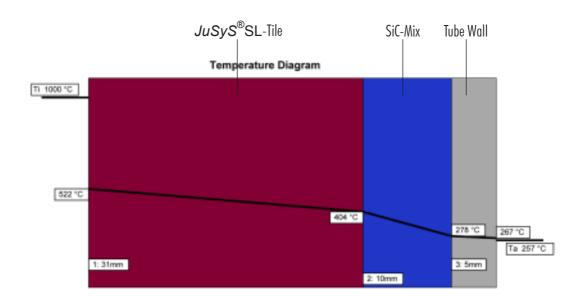
Calculation Model : Plane vertical Wall

Ambient Conditions	Inner	Outer	Unit
Ambient Temperature	1000	257	°C (Input)
Wall Temperature	485	267	°C (Calculated)
Heat Transfer Coefficient	200	9999,9	W/(m ² K)
Calculation Model	manual	manual	
Air Speed			m/s
Radiation Coefficient			
Sun Radiation			W/m²
Diameter			mm
Heat Flow Density through Wall	102994	102994	W/m²

Wall Construction		Cond. Factor	Thickn.	Cond.	Tempera Lay	
Material			mm	W/(mK)	Face °C	Mean °C
1: +SI107C	SIC brick		31	25,892	485,0	422,4
2: +SM115B	SiC mix		6	7,600	361,1	320,5
3: +ST0425	steel		5	41,161	279,8	273,5
			42		267,3	

Heat Transfer Calculation - without contamination -

Client : Tube Wall Tile System JuSyS SL


Project : rear-filled with SiC

Component / Part : Tube Wall Tile without Surface Contamination

Calculation Model : Plane vertical Wall

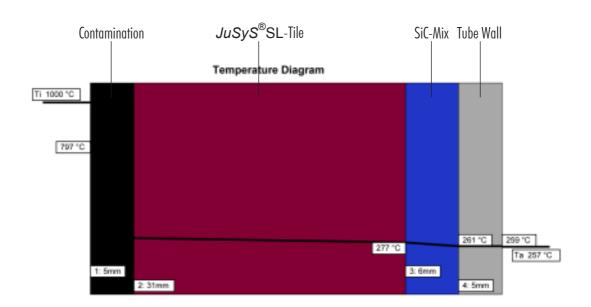
Ambient Conditions	Inner	Outer	Unit
Ambient Temperature	1000	257	*C (Input)
Wall Temperature	522	267	"C (Calculated)
Heat Transfer Coefficient	200	9999,9	W/(m²K)
Calculation Model	manual	manual	_
Air Speed			m/s
Radiation Coefficient			
Sun Radiation			W/m²
Diameter			mm
Heat Flow Density through Wall	95627	95627	W/m²

Wall Construction		Cond. Factor	Thickn.	Cond.	Tempera Lay	
Material			mm	W/(mK)	Face °C	Mean °C
1: +SI107C	SiC brick		31	25,167	521,9	462,1
2: +SM115B	SiC mix		10	7,600	404,0	341,1
3: +ST0425	steel		5	41,191	278,2	272,4
			46		266,6	

Heat Transfer Calculation

- with contamination -

Client : Tube Wall Tile System JuSyS SL


Project : rear-filled with SiC

Component / Part : Tube Wall Tile with surface contamination

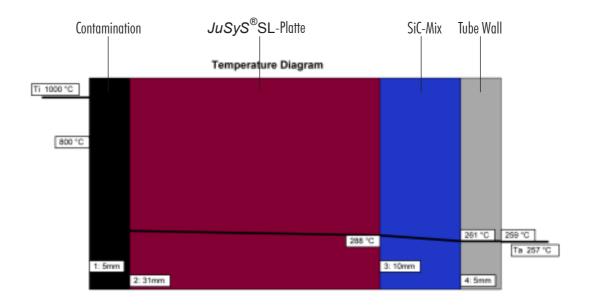
Calculation Model : Plane vertical Wall

Ambient Conditions	Inner	Outer	Unit
Ambient Temperature	1000	257	°C (Input)
Wall Temperature	797	259	°C (Calculated)
Heat Transfer Coefficient	100	9999,9	W/(m ² K)
Calculation Model	manual	manual	-
Air Speed			m/s
Radiation Coefficient			
Sun Radiation			W/m²
Diameter			mm
Heat Flow Density through Wall	20286	20286	W/m²

Wall Construction		Cond. Factor	Thickn.	Cond.	Tempera Lay	
Material			mm	W/(mK)	Face °C	Mean °C
1: +MK597A	contamination		5	0,204	797,1	554,7
2: +SI107C	SiC brick		31	26,300	301,4	289,4
3: +SM115B	SiC mix		6	7,600	277,5	269,5
4: +ST0425	steel		5	41,494	261,5	260,3
			47		259.0	

Heat Transfer Calculation - with contamination -

Client : Tube Wall Tile System JuSyS SL


Project : rear-filled with SiC

Component / Part : Tube Wall Tile with surface contamination

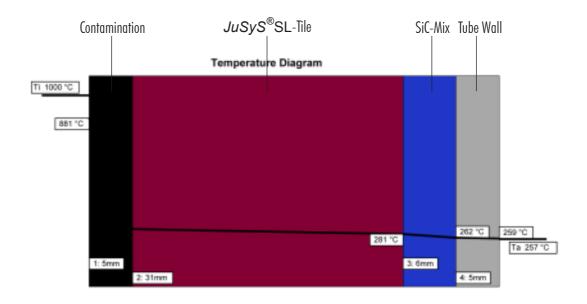
Calculation Model : Plane vertical Wall

Ambient Conditions	Inner	Outer	Unit
Ambient Temperature	1000	257	°C (Input)
Wall Temperature	800	259	°C (Calculated)
Heat Transfer Coefficient	100	9999,9	W/(m ² K)
Calculation Model	manual	manual	
Air Speed			m/s
Radiation Coefficient			
Sun Radiation			W/m²
Diameter			mm
Heat Flow Density through Wall	20019	20019	W/m²

Wall Construction	Cond. Thic	kn.	Cond.	Temperature of Layers	
Material	,	mm	W/(mK)	Face °C	Mean °C
1: +MK597A contamination		5	0,204	799,8	561,0
2: +SI107C SiC brick		31	26,300	311,4	299,6
3: +SM115B SiC mix		10	7,600	287,8	274,6
4: +ST0425 steel		5	41,495	261,4	260,2
		51		259,0	

Heat Transfer Calculation - with contamination -

Client : Tube Wall Tile System JuSyS SL


Project : rear-filled with SiC

Component / Part : Tube Wall Tile with surface contamination

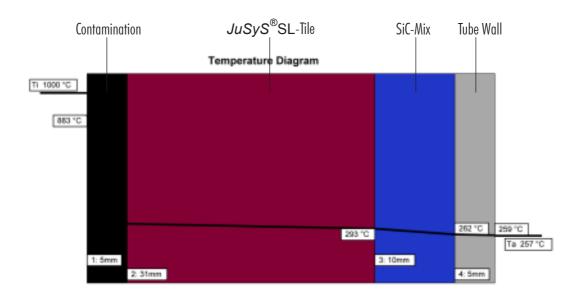
Calculation Model : Plane vertical Wall

Ambient Conditions	Inner	Outer	Unit
Ambient Temperature	1000	257	°C (Input)
Wall Temperature	881	259	*C (Calculated)
Heat Transfer Coefficient	200	9999,9	W/(m²K)
Calculation Model	manual	manual	_
Air Speed			m/s
Radiation Coefficient			
Sun Radiation			W/m²
Diameter			mm
Heat Flow Density through Wall	23741	23741	W/m²

Wall Construction		Cond. Factor	Thickn.	Cond.	Tempera Lay	
Material			mm	W/(mK)	Face °C	Mean °C
1: +MK597A	contamination		5	0,207	881,3	602,7
2: +SI107C	SiC brick		31	26,300	309,0	295,0
3: +SM115B	SiC mix		6	7,600	281,0	271,6
4: +ST0425	steel		5	41,480	262,2	260,8
			47		259,4	

Heat Transfer Calculation - with contamination -

Client : Tube Wall Tile System JuSyS SL


Project : rear-filled with SiC

Component / Part : Tube Wall Tile with Surface Contamination

Calculation Model : Plane vertical Wall

Ambient Conditions	Inner	Outer	Unit
Ambient Temperature	1000	257	*C (Input)
Wall Temperature	883	259	"C (Calculated)
Heat Transfer Coefficient	200	9999,9	W/(m²K)
Calculation Model	manual	manual	-
Air Speed			m/s
Radiation Coefficient			
Sun Radiation			W/m²
Diameter			mm
Heat Flow Density through Wall	23377	23377	W/m²

Wall Construction		Cond. Factor	Thickn Cond			Temperature of Layers	
Material			mm	W/(mK)	Face °C	Mean °C	
1: +MK597A	contamination		5	0,207	883,1	609,2	
2: +SI107C	SiC brick		31	26,300	320,5	306,7	
3: +SM115B	SiC mix		10	7,600	292,9	277,5	
4: +ST0425	steel		5	41,481	262,2	260,7	
			51		259,3		

Technisches Datenblatt / Fiche de données techniques

Rev. Hp / 30.11.2004

JUBRICK SI 107 C

		Allgemeine Eigenschaften	Propriétés générales
ROHSTOFFBASIS		Siliciumcarbid	
Base de matières premières		carbure de silicium	
BINDUNGSART: Type de liaison		keramisch-nitridisch céramique-nitrure	
ROHDICHTE Densité apparente DIN EN 993-1		2,72 g/cm³ +/-0,07 g/cm³	
CHEMISCHE ANALYSE:	sic	72,00 - 78,00 %	
Composition chimique RFA	Si ₃ N ₄ +Si ₂ ON ₂	18,00 - 26,00 %	
MAX. ANWENDUNGSTEMP.: Temp. maximum de service		1150 °C	
POROSITĂT (OFFEN): Porosité (ouverte) EN 993-1		15,0 %	
		Physikalische Eigensel	often / Dressiftin

		 Physikalische Eigensch 	naften / Propriétés	
	IRREV. LÄNGENÄNDERG. Mod. de la long. lin. (irrév.)	REV. THERM. DEHNUNG Mod. de la long. lin. (rév.)		
		DIN 51045	DIN EN 993-5	EN 993-15
			120,0 - 160,0 MPa	
400 °C		0,18 %		26,300 W/mK
600 °C		0,27 %		
800 °C		0,37 %		19,000 W/mK
1000 °C		0,46 %		17,400 W/mK
1200 °C				16,900 W/mK

Weitere Eigenschaften / Autres propriétés

TEMPERATURWECHSELBEST.: Résist. aux chocs thermiques Wasser / Eau: > 30 x

Technisches Datenblatt / Fiche de données techniques

Rev. Hp / 31.08.2006

JUFLOW SM 115 B

		- Allgemeine Eigenschaft	ten / Propriétés générales	
ROHSTOFFBASIS Base de matières premières		Siliciumcarbid carbure de silicium	VERARBEITUNG Mise en oeuvre	selbstfließend auto-coulable
BINDUNGSART: Type de liaison		hydraulisch-chemisch hydraulique-chimique	KÖRNUNG: Granulométrie	0 - 3,0 mm
			MATERIALBEDARF: Besoin en matériaux	2,60 t/m³
CHEMISCHE ANALYSE: Composition chimique	SIC A ₂ O ₃	58,00 % 26,00 %	WASSERZUSATZ: Addition d' eau	7,3 - 8,0 I / 100 kg
	SiO ₂ Fe ₂ O ₃ CaO	13,00 % 0,20 % 1,50 %	ANLIEFERUNGSZUSTAND: Etat à la livraison	trocken sec
MAX. ANWENDUNGSTEMP. Temp. maximum de service		1400 °C	HALTBARKEIT: Solidité	6 Monate / mois

		Physikalische Eigenschaften / Propriétés		
	IRREV. LÄNGENÄNDERG. Mod. de la long. lin. (irrév.)	REV. THERM. DEHNUNG Mod. de la long. lin. (rév.)	KALTDRUCKFESTIG Rés. à l' écras. à fr	
			PRE/R 27	EN 993-15
110 °C			70,0 MPa	
400 °C				7,200 W/mK
500 °C			70,0 MPa	
600 °C				5,800 W/mK
800 °C		0,40 %	100,0 MPa	5,000 W/mK
1100 °C	-0,25 %		100,0 MPa	
1350 °C			100,0 MPa	
		Weitere Eigenschaften	Autres propriétés	

ABRIEBFESTIGKEIT: 815 °C 8,8 cm³
Résistance r l'abrasion

ASTM C 704

References

JuSyS[®]SL

The rear-casted Tube Wall Protection System **JuSyS**® **SL** has already been successfully installed in a large number of plants since the year 2004. In numerous furnaces throughout Germany and in other European countries we accomplished a surface of more than 5.000 m² of installed tube wall tiles to best customer satisfaction.

We will gladly give your more detailed information upon request.

Just talk to us or write us.